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Abstract—Optimizing energy consumption for computing
workloads is a critical challenge, especially as we push the limits
of high-performance systems within resource constraints. An
underexplored approach to reducing energy costs is exploiting
value locality: the tendency of instructions to process similar
operand values during execution. Instruction operand values have
abundant similarities within the reachable instruction window, a
factor that existing architectures currently ignore. This paper
introduces the broad concept of instruction-level, value-aware
scheduling, an approach that leverages value locality in the hard-
ware scheduler. By redirecting instructions of similar operand
values to move together down the pipeline, the scheduler can
reduce switching activity and dynamic energy usage. Such value-
aware design philosophy, capable of adapting to a diverse range
of workloads and architectures, has potential to be applied in
broader architectural improvements.

I. INTRODUCTION

Energy efficiency is a critical concern in modern comput-
ing [1]. While static energy usage remains relatively con-
stant, dynamic energy usage is tied to the circuit switching
activity (the number of bit flips) during program execution
and presents opportunities for optimization. By executing
programs in a manner that reduces switching activity, we
can save dynamic energy without affecting the result and the
performance of the program.

One promising program feature that can be leveraged for
energy reduction is value locality. Value locality refers to
similar instruction operand values occurring throughout the
program. Since register transitions between similar values
can lead to lesser switching activity compared to transitions
between uncorrelated values, we can reduce dynamic energy
consumption if we are operating on similar, consecutive values
on the same data path.

Prior research has shown a high degree of operand value
similarities observed at the hardware architecture level [2] [3].
However, most existing exploitations on value locality re-
quire either compiler support [4] [5] or fine-tuning in the
program [3] [6]. Few have directly exploited this knowledge
for dynamic optimization in hardware. This paper introduces
the concept of value-aware hardware scheduling that can
reduce energy consumption by scheduling instructions with
similar operand values together, as illustrated in Figure 1.
While state-of-the-art schedulers assign an instruction onto
the first execution lane available, a value-aware scheduler
strategically assigns instructions with similar operands to
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Fig. 1: Overall workflow for the proposed scheduling technique: a
dynamic hardware scheduler that predicts instruction operand value
similarities, and executes instructions with similar values consecu-
tively on the same execution lane to reduce toggling.

flow down the pipeline consecutively. This scheduling policy
minimizes switching activities between instructions and can
reduce dynamic energy without changing the program.

II. OPPORTUNITIES IN VALUE LOCALITY

Value locality can be classified into two types: static value
locality, where one or a few values occur most of the time [2];
and dynamic value locality, where a value keeps changing
but remains the same as the one generated elsewhere in the
program [3]. Static value locality consists of values from
constant sources or program regularities that are known at
compile time [7] [8]. Dynamic value locality refers to variants
coming from program inputs that vary from run to run and
can only be known at runtime [3] [9] [10]. Although the
program input is typically different across program runs, there
is usually a consistent pattern of similarity between data
inputs [6]. For example, edge applications [11] [12] and big
data applications [13] [14] process data from real-world which
are naturally correlated. The proposed scheduling technique
has the potential to optimize both dynamic and static locality
to get the benefits of both worlds.

Figure 2 shows value locality in common applications, in-
cluding SPEC2017 [15]1, a general-purpose benchmark suite,
and EdgeBench [16], a data-intensive edge application bench-
mark suite (averaged across all individual benchmarks). For
each testbench, we ran a trace of 100k instructions after
the warmup stage (skipping first one billion instructions) and
counted the number of non-memory instructions that have the

1These SPEC 2017 results are non-compliant estimates.
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(a) SPEC2017 (General Purpose).
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(b) EdgeBench (Data Intensive).

Fig. 2: Percentage of non-memory instructions that have the first
source operand value match with at least one other instruction within
various instruction window lengths. Both benchmark suites show sig-
nificant value locality; EdgeBench shows more data input similarities
while SPEC2017 shows more program-related value correlation.

first source operand value match with at least one other instruc-
tion within specific instruction window lengths. The degree of
similarity between operand values further increases when we
relax the constraint of exact matches to approximate matches,
with the number of bit differences (Hamming Distance [17])
as the distance metric. In order to study value similarity, we
used Intel Pin [18] to generate single-thread traces annotated
with each instruction’s source operand values, and pass them
into a self-developed Python post-processor to find values that
are similar with those in nearby instructions.

While both benchmark suites show value locality from
program-related and input-related patterns, EdgeBench shows
more commonality among inherently correlated data inputs
compared to SPEC2017, which increases the percentage of
value locality for small but non-zero hamming distances. If
the microarchitecture can locate these similar values, it can
effectively decrease bit-level switching activities on critical
datapaths including ALUs and downstream execution units.

III. IMPLEMENTATION INSIGHTS

A. Predicting Value Locality

An ideal value-aware scheduler would know the source
operand values of instructions before making lane assign-
ments, but obtaining these values is impractical. Although
operand values are available in the pipeline when the instruc-
tion is ready to be issued, accessing them either requires addi-
tional reads from the register file or complex logic for reading
from bypassing. Both of these alternatives add complexity and
require extra pipeline stages on the critical path. Scheduling
decisions need to be done by predicting operand correlations
before knowing the actual values. To avoid adding latency,
the prediction can be done off the critical path between the
fetch and the issue stage, based on the instruction’s PC that is
available at the fetch stage.

B. Targeting Instructions

The proposed scheduler can focus on rescheduling ready-to-
execute instructions. Ready-to-execute instructions are those

with no unresolved dependencies, and can be issued im-
mediately if an execution lane is available. The concepts
for the scheduler can be applied to both non-memory and
memory instructions. While non-memory instructions are more
intuitive, reordering memory instructions requires meticulous
management for memory dependencies.

C. Maintaining Original Performance

To preserve original performance of the application, the
scheduler could be made to only reassign instructions launched
in the same cycle to difference execution lanes for better
value matches. While this approach can bring decent energy
reduction, we can further reorder instructions in different
cycles to exploit value locality beyond neighboring cycles with
minimal performance impact. However, for instructions with-
out immediate value correlation matches, indefinitely delaying
issuing to wait for future matches might lead to performance
drop. The impact is serious if the instructions on the critical
path are being pushed back when there is no value match. To
preserve original performance, we need to prioritize issuing
instructions on the critical path.

IV. BROADER IMPLICATIONS

The principles for designing value-aware schedulers can be
applied to value locality on other granularity levels, other
hardware platforms, and diverse scenarios for architectural
improvements. Exploring the unique value locality character-
istics of specialized operand types, such as Intel’s X86-64
architecture’s Vector operands, or specific instructions types,
can lead to fine-tuning for different operands or instructions for
energy reduction. The scheduling strategy can also be applied
to architectures beyond the CPU we modeled. The approach
is feasible for any system with flexible instruction issuing.
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